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Abstract. Consider an information diffusion process on a graph G that
starts with k > 0 burnt vertices, and at each subsequent step, burns
the neighbors of the currently burnt vertices, as well as k other unburnt
vertices. The k-burning number of G is the minimum number of steps
bk(G) such that all the vertices can be burned within bk(G) steps. Note
that the last step may have smaller than k unburnt vertices available,
where all of them are burned. The 1-burning number coincides with
the well-known burning number problem, which was proposed to model
the spread of social contagion. The generalization to k-burning number
allows us to examine different worst-case contagion scenarios by varying
the spread factor k.
In this paper we prove that computing k-burning number is APX-hard,
for any fixed constant k. We then give an O((n + m) logn)-time 3-
approximation algorithm for computing k-burning number, for any k ≥
1, where n and m are the number of vertices and edges, respectively.
Finally, we show that even if the burning sources are given as an input,
computing a burning sequence itself is an NP-hard problem.

Keywords: Network Analysis · Burning Number · APX-hard · Approx-
imation · k-Burning

1 Introduction

We consider an information diffusion process that models a social contagion over
time from a theoretical point of view. At each step, the contagion propagates
from the infected people to their neighbors, as well as a few other people in the
network become infected. The burning process, proposed by Bonato et al. [6,
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Fig. 1. The process of burning a graph G. The unburnt vertices that have been chosen
to burn at round i (except for the neighbors of the previously burned vertices) are
labelled with ti. (a) A 1-burning with 4 rounds, which is also the minimum possible
number of rounds to burn all the vertices with 1-burning, i.e., b(G) = 4. (b) A 2-burning
with 3 rounds, which is the minimum possible, i.e., b2(G) = 3.

7], provides a simple model for such a social contagion process. Specifically, the
burning number b(G) of a graph G is the minimum number of discrete time steps
or rounds required to burn all the vertices in the graph based on the following
rule. One vertex is burned in the first round. In each subsequent round t, the
neighbors of the existing burnt vertices and a new unburnt vertex (if available)
are burned. If a vertex is burned, then it remains burnt in all the subsequent
rounds. Figure 1(a) illustrates an example of the burning process. The vertices
that are chosen to burn directly at each step, form the burning sequence.

In this paper we examine k-burning number for a graph, which generalizes
the burning number by allowing to directly burn k unburnt vertices at each
round; see Figure 1(b). Throughout the paper, we use the notation bk(G) to
denote the k-burning number of a graph G. Note that in the case when k = 1,
the 1-burning number b1(G) coincides with the original burning number b(G).
The burning process can be used to model a variety of applications, e.g, the
selection of the vertices in social networks (e.g., LinkedIn or Facebook) to fast
spread information to the target audience with a pipeline of steady new recruits.
It may also be used in predictive models to examine the worst-case spread of
disease. The generalization of a burning process to k-burning allows us to use k
as a model parameter, i.e., one can choose a cost-effective value for k to increase
the probability of reaching the target audience.

1.1 Related work

The problem of computing the burning number of a graph is NP-complete, even
for simple graph classes such as trees with maximum degree three, and for forests
of paths [4]. A rich body of research examines upper and lower bounds for the
burning number for various classes of graphs. Bonato et al. [8, 4] showed that for
every connected graph G, b(G) ≤ 2

√
n − 1, where n is the number of vertices,

and conjectured that the upper bound can be improved to d
√
ne. While the
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conjecture is still open, Land and Lu [18] improved this bound to
√
6n
2 . However,

the d
√
ne upper bound holds for spider graphs [10] and for p-caterpillars with at

least 2 d
√
ne − 1 vertices of degree 1 [14].

The burning number problem has received considerable attention in recent
years and nearly tight upper and lower bounds have been established for var-
ious well-known graph classes including generalized Petersen graphs [22], p-
caterpillars [14], graph products [21], dense and tree-like graphs [16] and theta
graphs [19]. The NP-hardness of the burning number problem motivated re-
searchers to study the parameterized complexity and approximation algorithms.
Kare and Reddy [17] gave a fixed-parameter tractable algorithm to compute
burning number parameterized by neighborhood diversity, and showed that for
cographs and split graphs the burning number can be computed in polyno-
mial time. Bonato and Kamali [9] showed that the burning number of a graph
is approximable within a factor of 3 for general graphs and 2 for trees. They
gave a polynomial-time approximation scheme (PTAS) forests of paths, and a
polynomial-time algorithm when the number of paths is fixed. They also men-
tioned that ‘it might be possible that a PTAS exists for general graphs’.

A closely related model that relates to the burning process is the firefighter
model [13]. In a firefighter problem, a fire breaks out at a vertex, and at each sub-
sequent step, the fire propagates to the undefended neighbors and the firefighter
can defend a vertex from burning. The burnt and defended vertices remain so in
the next steps. The problems seek to maximize the number of defended vertices.
This problem does not have a constant factor approximation [2], which indicates
that it is very different than the burning number problem. A variant of firefighter
problem where b ≥ 2 vertices can be defended at each step has been shown not
to be approximable within a constant factor [3]. There are many information dif-
fusion models and broadcast scheduling methods in the literature [23, 20, 5], but
the k-burning process seems to differ in the situation that at each step it allows
k new sources to appear anywhere in the graph, i.e., some new burn locations
may not be in close proximity of the currently burnt vertices.

Our Contribution. In this paper, we generalize the concept of burning num-
ber of a graph to k-burning number. We first prove that computing k-burning
number is APX-hard for any fixed k. Thus burning number (i.e., when k = 1)
is also APX-hard, settling the complexity question posed by Bonato and Ka-
mali [9]. We then show that k-burning number is 3-approximable in polynomial
time, for any k ≥ 1, where a 3-approximation algorithm was known previously
for the case when k = 1 [9]. Finally, we show that even if the burning sources are
given as an input, computing a burning sequence itself is an NP-hard problem.

2 Preliminaries

In this section we introduce some notation and terminology.
Given a graph G, the k-burning process on G is a discrete-time process defined

as follows: Initially, at time t = 0, all the vertices are unburnt. At each time step
t ≥ 1, the neighbors of the previously burnt vertices are burnt. In addition, k
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new unburnt vertices are burned directly, which are called the burning sources
appearing at the tth step. If the number of available unburnt vertices is less
than k, then all of them are burned. The burnt vertices remain in that state in
the subsequent steps. The process ends when all vertices of G are burned. The
k-burning number of a graph G, denoted by bk(G), is the minimum number of
rounds needed for the process to end. For k = 1, we omit the subscript k and
simply use the notation b(G).

The burning sources are chosen at every successive round form an ordered list,
which is referred to as a k-burning sequence. A burning sequence corresponding
to the minimum number of steps bk(G) is referred to as a minimum burning
sequence. We use the notation L(G, k) to denote the length of a minimum k-
burning sequence.

Let G = (V,E) be a graph with n vertices and m edges. A vertex cover is
a set S ⊆ V such that at least one end-vertex of each edge belongs to S. A
dominating set of G is a set D ⊆ V such that every vertex in G is either in
D or adjacent to a vertex in D. An independent set of G is a set of vertices
such that no two vertices are adjacent in G. A minimum vertex cover (resp.,
minimum independent and dominating set) is a vertex cover (resp., independent
and dominating set) with the minimum cardinality. An independent set Q is
called maximal if one cannot obtain a larger independent set by adding more
vertices to Q, i.e., every vertex in V \Q is adjacent to a vertex in Q.

3 APX-Hardness

In this section we show that computing burning number is an APX-hard prob-
lem, which settles the complexity question posed by Bonato and Kamali [9]. We
then show that the k-burning number problem is APX-hard for any k ∈ O(1).

3.1 APX-Hardness for Burning Number

We will reduce the minimum vertex cover problem in cubic graphs, which is
known to be APX-hard [1]. Given an instance G = (V,E) of the minimum vertex
cover, we construct a graph G′ of the burning number problem. We then show
that a polynomial-time approximation scheme (PTAS) for the burning number
in G′ = (V ′, E′) implies a PTAS for the minimum vertex cover problem, which
contradicts that the minimum vertex cover problem is APX-hard.

Construction of G′. The graph G′ = (V ′, E′) will contain vertices that
correspond to the vertices and edges of G. Figures 2(a)–(c) illustrate an example
for the construction of G′ from G. To keep the illustration simple, we used a
maximum degree three graph instead of a cubic graph.

To construct V ′, we first make a set S by taking a copy of the vertex set V .
We refer to S as the v-vertices of G′. For every edge (u, v) ∈ E, we include two
vertices uv and vu in V ′, which we refer to as the e-vertices of G′. In addition,
we add (2n + 3) isolated vertices in V ′, where n = |V | is the number of vertices
in G.
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Fig. 2. Illustration for the construction of G′ from G. To keep the illustration simple,
here we use a maximum degree three graph instead of a cubic graph. (a) G, (b) con-
struction idea, and (c) G′, where v- and e-vertices are shown in black disks, d-vertices
are shown in squares, tail vertices are shown in cross, and isolated vertices are shown
in unfilled circles. (d) Hbc. (e) Burning Hbc with burning sources p and q, which are
outside of Hbc.

For every edge (u, v) ∈ E, we add three edges in E′: (u, uv), (v, vu) and
(uv, vu). Figure 2(b) illustrates the resulting graph. We then divide the edge
(uv, vu) with 2n division vertices. We refer to these division vertices as the d-
vertices of G′. We also add an n-vertex path and connect one end with the
median division vertices of the path u, uv, . . . , vu, v. We refer to this n-vertex
path as the tail of edge (u, v). Figure 2(c) illustrates the resulting graph.

This completes the construction of G′.

Reduction In the following, we show how to compute a burning sequence in
G′ from a vertex cover in G, and vice versa.

Lemma 1. If G has a vertex cover of size at most q, then G′ has a burning
sequence of length at most (q + 2n + 3), and vice versa.
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Proof. We will use the idea of a neighborhood of a vertex. By a r-hop neighbor-
hood of a vertex u in G′, we denote the vertices that are connected to u by a
path of at most r edges.

Vertex Cover to Burning Sequence: Let C be a vertex cover of G of size
at most q. In G′, we create a burning sequence S by choosing the v-vertices of
C as the burning sources (in any order), followed by the burning of the (2n + 3)
isolated vertices. Note that we need at most q rounds to burn the v-vertices in
G′ that correspond to the nodes in C, and in the subsequent (2n+ 3) rounds, we
can burn the isolated vertices.

We now show that all the vertices are burnt within (q+ 2n+ 3) rounds. First
observe that after q rounds, all the v-vertices corresponding to C are burnt. Since
C is a vertex cover, all the v-vertices that do not belong to C are within (2n+3)-
hop neighborhood from some vertex in C. Therefore, all v-vertices will be burnt
within the next (2n + 3) rounds. Similarly, all the e-vertices, d-vertices and tail
vertices are within (2n + 3)-hop neighborhood from some vertex in C, and thus
they will be burnt within the next (2n + 3) rounds. Since the isolated vertices
are chosen as the burning sources for the last (2n+ 3) rounds, all the vertices of
G′ will be burnt within (q + 2n + 3) rounds.

Burning Sequence to Vertex Cover: We now show how to transform a
given burning sequence S of length (q + 2n + 3) into a vertex cover C of G such
that |C| ≤ q. Let S be the burning sources of the given burning sequence for G′.

For every edge (b, c) ∈ E, we define Hbc to be a subgraph of G′ induced
by the (n + 1)-hop neighborhood of b and c, as well as the vertices on the path
b, bc, . . . , cb, c, and the vertices of the tail associated to (b, c), e.g., see Figure 2(d).
For every Hbc and for each burning source w in it, we check whether w is closer
to b than c. If b (resp., c) has a smaller shortest path distance to w, then we
include b (resp., c) into C. We break ties arbitrarily.

We now prove that C is a vertex cover of G. Suppose for a contradiction that
there exists an edge (b, c) ∈ E, where neither b nor c belongs to C. Then every
burning source s in G′ is closer to some v-vertex other than b and c. In other
words, Hbc is empty of any burning source. Since Hbc contains an induced path
of (n+ 1) + 1 + (2n+ 2) + 1 + (n+ 1) = (4n+ 6) vertices and a tail of n vertices,
burning all the vertices by placing burning sources outside Hbc would take at
least ( 4n+6

2 + n + 1) steps, which is strictly larger than (q + 2n + 3), e.g., see
Figure 2(d). Therefore, by construction of C, at least one of b and c must belong
to C.

It now suffices to show that the size of C is at most q. Since there are (2n+3)
isolated vertices in G′, they must correspond to (2n + 3) burning sources in the
burning sequence. The remaining q burning sources are distributed among the
graphs Huv. Therefore, C can have at most q vertices. ut

We now have the following theorem.

Theorem 1. The burning number problem is APX-hard.

Proof. Let G be an instance of the vertex cover problem in a cubic graph, and let
G′ be the corresponding instance of the burning number problem. By Lemma 1,
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if G has a vertex cover of size at most q, then G′ has a burning sequence of
length at most (q + 2n + 3), and vice versa. Let C∗ be a minimum vertex cover
in G. Then b(G′) ≤ |C∗|+ 2n + 3.

Let A be a (1+ε)-approximation algorithm for computing the burning num-
ber, where ε > 0. Then the burning number computed using A is at most
(1 + ε)b(G′). By Lemma 1, we can use the solution obtained from A to compute

a vertex cover C of size at most (1 + ε)b(G′) − 2n − 3 in G. Therefore, |C||C∗| =
(1+ε)b(G′)−2n−3

|C∗| = b(G′)+εb(G′)−2n−3
|C∗| ≤ (|C∗|+2n+3)+εb(G′)−2n−3

|C∗| = 1 + εb(G′)
|C∗| .

Note that G′ has n v-vertices, (2n+ 3) isolated vertices, 2|E| e-vertices, n|E|
tail vertices and 2n|E| d-vertices. Since |E| ≤ 3n/2, the total number of vertices
in G′ without the isolated vertices is upper bounded by n + 3n + n2 + 3n2 ≤
4n2 + 4n ≤ 5n2, for any n > 4. Since the burning number of a connected graph
with r vertices is bounded by 2

√
r [4], the burning number of G′ is upper bounded

by (2n + 3) + 2
√

5n2 < 8n, where the term (2n + 3) corresponds to the isolated
vertices in G′. Furthermore, by Brooks’ theorem [11], |C∗| > n/3.

We thus have |C|
|C∗| ≤ 1 + εb(G′)

|C∗| ≤ 1 + 8nε
|C∗| ≤ 1 + 8nε

n/3 = 1 + 24ε, which

implies a polynomial-time approximation scheme for the minimum vertex cover
problem. Hence the APX-hardness of burning number problem follows from the
APX-hardness of minimum vertex cover. ut

Hardness for Connected Graphs: Note that in our reduction, G′ was discon-
nected. However, we can prove the hardness even for connected graphs as follows.
Let G be the input cubic graph, and let v be a vertex in G. We create another
graph H by adding two vertices w and z in a path v, w, z. It is straightforward
to see that the size of a minimum vertex cover of H is exactly one plus the min-
imum vertex cover of G. We now carry out the transformation into a burning
number instance G′ using H, but instead of using (2n + 3) isolated vertices, we
connect them in a path P = (w,Q,Q′, i1, Q

′, i2, Q
′, . . . , i2n+3, Q

′), where Q is
a sequence of (q + 2n + 2) vertices, Q′ is a sequence of (2n + 2) vertices, and
i1, . . . , i2n+3 are the vertices corresponding to the (previously) isolated vertices.
Note that P \ {u,Q} has (2n+ 2)(2n+ 3) + (2n+ 3) = (2n+ 3)2 vertices. Since
the burning number of a path of r vertices is d

√
re [4], any burning sequence will

require (2n + 3) burning sources for P \ {u,Q}.
Note given a vertex cover C in H of length q, if w is not in C, then C must

contain z. Hence we can replace z by w. Therefore, we can burn all the vertices
within (q+2n+3) rounds by burning w first and then the other vertices of C, and
then the vertices of P \ {u,Q} using the known algorithm for burning path [4].
On the other hand, if a burning sequence of length (q + 2n + 3) is provided,
then (2n + 3) sources must be used to burn P \ {u,Q}. Since they are at least
(q+ 2n+ 3) distance apart from the vertices of H, at most q burning sources are
distributed in H, implying a vertex cover of size q. We thus have the following
corollary.

Corollary 1. The burning number problem is APX-hard, even for connected
graphs.
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G2,2G G2

Fig. 3. Illustration for the construction of G2 and G2,2 from G.

The generalization of the APX-hardness proof for k-burning number is in-
cluded in the Appendix.

4 Approximation Algorithms

Bonato and Kamali [9] gave an O((n+m) log n)-time 3-approximation for burn-
ing number We leverage Hochbaum and Shmoys’s [15] framework for designing
the approximation algorithm and give a generalized algorithm for computing
k-burning number. For convenience, we first describe the 3-approximation algo-
rithm in terms of Hochbaum and Shmoys’s [15] framework.

4.1 Approximating Burning Number

Here we show that for connected graphs, the burning number can be approxi-
mated within a factor of 3 in O((n + m) log n) time. Let Gi be the ith power
of G, i.e., the graph obtained by taking a copy of G and then connecting every
pair of vertices with distance at most i with an edge. We now have the following
lemma.

Lemma 2. Let G be a connected graph and assume that b(G) = t. Then Gt

must have a dominating set of size at most t.

Proof. Since b(G) = t, all the vertices are burnt within t rounds. Therefore,
every vertex in G must have a burning source within its t-hop neighborhood.
Consequently, each vertex in Gt, which does not correspond to a burning source
in G, must be adjacent to at least one burning source. One can now choose the
set of burning sources as the dominating set in Gt. ut

For convenience, we define another notation Gi,j , which is the jth power
of Gi. Although Gi,j coincides with Gi+j , we explicitly write i, j. Let Mi,2 be
a maximal independent set of Gi,2. We now have the following lemma, which
follows from the observation in [15] that the size of a minimum dominating set
in G is at least the size of a maximal independent set in G2. However, we give
a proof for completeness.

Lemma 3. The size of a minimum dominating set in Gi is at least |Mi,2|.
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Proof. Let Q be a minimum dominating set in Gi. It suffices to prove that for
each vertex v in (M i,2 \Q), there is a distinct vertex in (Q \Mi,2) dominating
v (i.e., in this case, adjacent to v).

Let {p, q} ⊂ (Mi,2\Q) be two vertices in Gi, which are dominated by a vertex
w ∈ Q in Gi. Since w is adjacent to p, q in Gi,2 and Mi,2 is an independent set,
we must have w ∈ (Q \Mi,2). Since w is adjacent to two both p, q in Gi, p, q
will be adjacent in Gi,2, which contradicts that they belong to the independent
set Mi,2. Therefore, each vertex in (M i,2 \Q), must be dominated by a distinct
vertex in (Q \Mi,2). ut

Assume that b(G) = t. By Lemma 3, Gt must have a dominating set of size
at least |Mt,2|. By Lemma 2, the size of a minimum dominating set Q in Gt is
upper bounded by t. We thus have the condition |Mt,2| ≤ |Q| ≤ t.

Corollary 2. Let G be a graph with burning number t and let Mt,2 be a maximal
independent set in Gt,2. Then |Mt,2| ≤ t.

Note that for any other positive integer k < t, the condition |Mk,2| ≤ k is not
guaranteed. We use this idea to approximate the burning number. We find the
smallest index j, where 1 ≤ j ≤ n, that satisfies |Mj,2| ≤ j and prove that the
burning number cannot be less than j.

Lemma 4. Let j′ be a positive integer such that j′ < j. Then b(G) 6= j′.

Proof. Since j is the smallest index satisfying |Mj,2| ≤ j, for every other Mj′,2,
with j′ < j we have |Mj′,2| ≥ j′+ 1. Suppose for a contradiction that b(G) = j′,

then by Lemma 2, Gj′ will have a dominating set of size at most j′. But by
Lemma 3, Gj′ has a minimum dominating set of size at least |Mj′,2| ≥ j′ + 1.

ut

The following theorem shows how to compute a burning sequence in G of
length 3j. Since j is a lower bound on b(G), this gives us a 3-approximation
algorithm for the burning number problem.

Theorem 2. Given a connected graph G with n vertices and m edges, one can
compute a burning sequence of length at most 3b(G) in O((n + m) log n) time.

Proof. Note that Lemma 4 gives a lower bound for the burning number. We now
compute an upper bound. We burn all the vertices of Mj,2 in any order. Since
every maximal independent set is a dominating set, Mj,2 is a dominating set in
Gj,2. Therefore, after the jth round of burning, every vertex of G can be reached
from some burning source by a path of at most 2j edges. Thus all the vertices
will be burnt in |Mj,2| + 2j ≤ 3j steps. Since j is a lower bound on b(G), we
have |Mj,2|+ 2j ≤ 3j ≤ 3b(G).

It now suffices to show that the required j can be computed in O((n +
m) log n) time. Recall that j is the smallest index satisfying |Mj,2| ≤ j. For
any j′ > j, we have |Mj′,2| ≤ |Mj,2| ≤ j < j′. Therefore, we can perform a
binary search to find j in O(log n) steps. At each step of the binary search, we
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Fig. 4. Illustration for computing Mr,2, when r = 1. (a) G1,2 = G2, where the edges
of G is shown in black, and a maximal independent set M1,2 = {p, q}. (b)–(c) Compu-
tation of M1,2, where the numbers represent the order of vertex deletion.

need to compute a maximal independent set Mr,2 in a graph Gr,2 = G2r, where
1 ≤ r ≤ n. To compute Mr,2, we repeatedly insert an arbitrary vertex w of G
into Mr,2 and then delete w along with its r-hop neighborhood in G following
a breadth-first order. Figure 4 illustrates such a process. Since every edge is
considered at most once, and the process takes O(m + n) time. Hence the total
time is O((n + m) log n). ut

4.2 Approximating k-Burning Number

It is straightforward to generalize Lemma 2 for k-burning number, i.e., if bk(G) =
t, then the size of a minimum dominating set Q in Gt is at most kt. By Lemma
6, Gt must have a dominating set of size at least |Mt,2|. Therefore, we have
|Mt,2| ≤ |Q| ≤ kt.

Let j be the smallest index such that |Mj,2| ≤ kj. Then for any j′ < j, we

have |Mj′,2| > kj′, i.e., every minimum dominating set in Gj′ must be of size
larger than kj′. We thus have bk(G) 6= j′. Therefore, j is a lower bound on bk(G).

To compute the upper bound, we first burn the vertices of Mj,2. Since
|Mj,2| ≤ kj, this requires at most j steps. Therefore, after j steps, every vertex
has a burning source within its 2j-hop neighborhood. Hence all the vertices can
be burnt within 3j ≤ 3bk(G) steps.

Theorem 3. The k-burning number of a graph can be approximated within a
factor of 3 in polynomial time.

5 Burning Scheduling is NP-Hard

It is tempting to design heuristic algorithms that start with an arbitrary set of
burning sources and then iteratively improve the solution based on some local
modification of the set. However, we show that even when a set of k burn-
ing sources are given as an input, computing a burning sequence (i.e., burning
scheduling) using those sources to burn all the vertices in k rounds is NP-hard.
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c1 = (x1 ∨ x2 ∨ x3) c2 = (x1 ∨ x2 ∨ x3) c3 = (x2 ∨ x3)

vx1
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Fig. 5. Illustration for the construction of G, where the given sources are shown in
large disks.

We reduce the NP-hard problem 3-SAT [12]. Given an instance I of 3-SAT
with m clauses and n variables, we design a graph G with O(n2+m) vertices and
edges, and a set of 2n burning sources. We prove that an ordering of the burning
sources to burn all the vertices within 2n rounds can be used to compute an
affirmative solution for the 3-SAT instance I, and vice versa (e.g., see Figure 5).
Due to space constraints, we include the details in the Appendix.

6 Directions for Future Research

A natural open problem is to find an improved approximation algorithm for k-
burning number. One can also investigate whether existing approaches to com-
puting burning number for various graph classes can be extended to obtain nearly
tight bounds for their k-burning number. For example, the burning number of
an n-vertex path is d

√
ne [8], which can be generalized to d

√
n/ke for k-burning,

as shown in the Appendix.
It would also be interesting to examine the edge burning number, where a

new edge is burned at each step, as well as the neighboring unburnt edges of the
currently burnt edges are burned. The goal is to burn all the edges instead of
all the vertices. Edge burning number can be different that the burning number,
e.g., one can burn the vertices of every wheel graph in two rounds, but the
edge burning number can be three. Given a graph, can we efficiently determine
whether the burning number is equal to its edge burning number?

Acknowledgement. We thank Payam Khanteimouri, Mohammad Reza Kazemi,
and Zahra Rezai Farokh for an insightful discussion that resulted into the addi-
tion of tail vertices while constructing G′ in the proof of Lemma 1.
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A APX-Hardness for k-Burning Number

For k > 1, we use a similar reduction as we described for the burning number
problem, except that we use a different number of division and isolated vertices.
Given a decision problem that asks whether G has a vertex cover of size q, we
use 2nk division vertices for each edge, n vertices for each tail, and (k − 1)q +
k(2nk + 3) isolated vertices to construct G′. We then show that the answer to
the problem is affirmative if and only if G′ has a k-burning sequence of length
(q + 2nk+ 3), and finally carry out the APX-hardness proof similar to the proof
of Theorem 1.

Theorem 4. The k-burning number problem is APX-hard for every k ∈ O(1).

Proof. We use a similar reduction as we described for the burning number prob-
lem, except that we use a different number of division and isolated vertices.
Assume that G has a vertex cover of size q. We use 2nk division vertices for
each edge, n vertices for each tail, and (k − 1)q + k(2nk + 3) isolated vertices
to construct G′. If G has a vertex cover of size q, then the resulting graph G′

has a burning sequence of length at most q + (2nk + 3), as follows. We first
burn q vertices corresponding to the vertex cover along with (k − 1)q isolated
vertices. Since every unburnt v-, e-, d- or tail vertex is within the (2nk + 3)-hop
neighborhood of some burnt vertex, they will be burnt in the next (2nk + 3)
rounds by propagation. Furthermore, the isolated vertices will be directly burnt
in the last k(2nk + 3) rounds.

Assume now that G′ has a k-burning sequence S of length (q + 2nk + 3).
Burning the (k−1)q+k(2nk+ 3) isolated vertices requires (k−1)q+k(2nk+ 3)
burning sources. Therefore, the remaining q burning sources are distributed in
the connected subgraph of G′. For any edge (u, v), we define Huv to be a subgraph
of G′ induced by the (nk+1)-hop neighborhood of u and v, as well as the vertices
on the path u, uv, . . . , vu, v, and the associated tail vertices. For every Huv and
for each burning source w in it, we check whether w is closer to u than v. If u
(resp., v) has a smaller shortest path distance to w, then we include u (resp., v)
into C. We break ties arbitrarily.

We now prove that C is a vertex cover of G. Suppose for a contradiction that
there exists an edge (u, v) ∈ E, where neither u nor v belongs to C. Then every
burning source s in G′ is closer to some v-vertex other than u and v. In other
words, Huv is empty of any burning source. Since Huv contains an induced path
of (nk + 1) + 1 + (2nk + 2) + 1 + (nk + 1) = (4nk + 6) vertices and a tail of n
vertices, burning all the vertices by placing burning sources outside Huv would
take at least (4nk+6

2 + n + 1) steps, which is strictly larger than (q + 2nk + 3).
Therefore, by construction of C, at least one of u and v must belong to C.

Therefore, the rest of the reduction can now be carried out following the argu-

ment presented in the proof of Theorem 1. Note that |C||C∗| = (1+ε)bk(G
′)−2nk−3

|C∗| =
bk(G

′)+εbk(G
′)−2nk−3

|C∗| ≤ (|C∗|+2nk+3)+εbk(G
′)−2nk−3

|C∗| = 1 + εbk(G
′)

|C∗| . Since the num-

ber of vertices in G′ is upper bounded by n + 3n + n2 + 3n2k < 5n2k, we
have bk(G′) ≤ (k − 1)q + k(2nk + 3) + 2

√
5n2k < 8nk2, for sufficiently large n.
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Therefore, |C||C∗| ≤ 1 + εbk(G
′)

|C∗| ≤ 1 + 8nk2ε
|C∗| = 1 + 24k2ε, which contradicts the

APX-hardness of minimum vertex cover. ut

B Burning Scheduling is NP-Hard

We will reduce the NP-hard problem 3-SAT [12]. Given an instance I of 3-SAT
with m clauses and n variables, we will design a graph G with O(n2+m) vertices
and edges, and a set of 2n burning sources. We will prove that an ordering of
the burning sources to burn all the vertices within 2n rounds can be used to
compute an affirmative solution for the 3-SAT instance I, and vice versa.

B.1 Construction of G

Let x1, x1, . . . , xn, xn be the literals of I. For each literal ` we create a vertex v`,
as shown in Figure 5 using large disks. We refer to these vertices as the literal
vertices. These vertices are the burning sources of G. For the ith positive literal,
we create a path of 2(n− i) vertices and connect one of its ends with the literal
vertex. In Figure 5, these paths are drawn above the literal vertex with dashed
edges. We will refer to these paths as the top paths of G. Similarly, for the ith
negative literal, we create a top path with 2(n− i) vertices and connect it to the
literal vertices. For each literal vertex in G, we now create a set of bottom paths
symmetrically, which are drawn below the literal vertices in Figure 5.

For each clause ci, 1 ≤ i ≤ m in I, we create a vertex vci . We refer to these
vertices as the clause vertices. For each literal in ci, we add an edge between the
literal vertex and vci . This completes the construction of G.

B.2 Reduction

Let L be the set of 2n literal vertices in G, which are the input burning sources.
We now show that an ordering of the burning sources that burns all the vertices
within 2n rounds exists if and only if I admits an affirmative solution.

First assume that there exists an ordering of the burning sources that burns
all the vertices within 2n rounds. For every source, if the round when it was
burned is odd, then we set the corresponding literal to true. Otherwise, we set
the literal to false, e.g., see Figure 6. We now prove that such an assignment will
satisfy all the clauses of I.

We first prove that for each index j from 1 to n, the literal vertices vxj
and

vxj
must be burned within round 2j. The reason is that both vxj

and vxj
has

a bottom path with 2(n − j) vertices. If they are not burned within round 2j,
then we have at most 2n− (2j + 1) = 2n−2j−1 steps left which is smaller than
the length of the bottom path. Therefore, vx1 and vx1

are burnt within first two
rounds, vx2

and vx2
are burnt within the next two rounds, and so on. Therefore,

our assignment based on odd and even label will consistently assign the truth
values to the literals, e.g., if x1 is set to true, then x1 is set to false.
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Suppose now for a contradiction that some clause c is not satisfied. Then all
its literals have are assigned even labels. By the construction of the top paths,
each burning source with an even label can only have 2(n − j) rounds left to
propagate the burning. Therefore, the propagation can only burn the top path,
i.e., the burning does not reach the clause vertex vc. This contradicts our initial
assumption that the burning sources burn all the vertices within 2n rounds.

vx1
vx1

vx2
vx2

vx3
vx3

c1 = (x1 ∨ x2 ∨ x3) c2 = (x1 ∨ x2 ∨ x3) c3 = (x2 ∨ x3)
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Fig. 6. A burning sequence for the given sources that burns all the vertices. The literals
corresponding to the sources with odd labels are set to true. In this case, x1 = 1, x2 = 1,
and x3 = 1.

Assume now that I has an affirmative solution. For each index j from 1 to
n, if xj is true, then we burn vxj and vxj

at round (2j − 1) and 2j, respectively.
Otherwise, xj is true, and we burn vxj

and vxj at round (2j− 1) and 2j, respec-
tively. Therefore, the number of rounds is 2n. We now show that all the vertices
of G will be burnt. The vertices vxj

and vxj
are connected to top and bottom

paths of length 2(n − j), and we have at least 2(n − j) steps left to burn these
paths by propagation. Therefore, it suffices to show that the clause vertices are
all burned.

Suppose now for a contradiction that some clause vertex vc is not burned.
Since c is satisfied, we can find a literal that is set to true. Assume without
loss of generality that the literal is a positive literal xi. Then the corresponding
literal vertex vxi

is burned at round (2j−1). Hence we will have 2n− (2j−1) =
2(n − j) + 1 steps left to propagate the burning beyond top path. Hence the
vertex vc must be burnt within 2n rounds.

The following theorem summarizes the results of this section.

Theorem 5. Given a graph G and a set of k burning sources. Finding a burning
sequence for the given burning sources that burns all the vertices of G within k
rounds is NP-hard.
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C k-Burning Number for Paths

Theorem 6. If G is an n-vertex path, then bk(G) = d
√

n/ke.

Proof. For a lower bound, observe that at the first round k vertices are burned.
In the next round, at most 2k new vertices are burned through propagation,
as well as k new vertices are burned. Let S be the set of vertices that were
burned by propagation and let D be the vertices burned directly. Then in the
3rd round, the set S can lead to at most S new burnt vertices by propagation, and
the set D may generate at most 2k new burnt vertices. Therefore, the number
of vertices burned in this round is at most |S| + 2|D| + k = |S| + 3k = 5k.
In a general mth step, we burn at most (2m − 1)k new vertices. Therefore,
k + 3k + 5k + . . . + (2bk(G)− 1)k ≥ n, which implies bk(G) ≥ d

√
n/ke.

For an upper bound, we can compute the partition of the path into k sub-
paths, each with at most dn/ke vertices. We can then apply the known algorithm
for burning number [8] to burn all the paths in parallel by a k-burning process
in d

√
dn/kee = d

√
n/ke rounds. ut


